Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.873
Filtrar
1.
Tidsskr Nor Laegeforen ; 144(4)2024 Mar 19.
Artigo em Norueguês | MEDLINE | ID: mdl-38506013

RESUMO

Background: Anemia in children is common and finding the underlying cause is often uncomplicated. However, in some cases, the underlying diagnosis is rare and difficult to diagnose. Case presentation: A toddler presented with severe anemia with normal red cell indices and a low reticulocyte count. The remaining hematological parameters were normal, bar a slight thrombocytosis. At this point a diagnosis of transient erythroblastopenia of childhood (TEC) was made. The child continued to have slight anemia with intermittent macrocytosis and reticulocytopenia throughout childhood. Growth and development was normal, and there were no signs of congenital abnormalities in the heart or kidneys nor any craniofacial or phalangeal defects. Repeated bone marrow examinations showed no significant abnormal findings. As a teenager the patient was diagnosed with Diamond-Blackfan anemia through an exome-based gene panel which revealed a mutation in the RPL11 gene. Interpretation: Congenital bone marrow failure syndromes do not always present in the classical way, leading to a delayed diagnosis. The increasing availability of different gene panels for patients with persistent abnormal hematological laboratory parameters offers the possibility of a more accurate diagnostic pathway, which is important for adequate follow-up and genetic counselling.


Assuntos
Anemia de Diamond-Blackfan , Anemia Hemolítica Congênita , Anemia , Adolescente , Humanos , Anemia/diagnóstico , Anemia/etiologia , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Mutação
2.
Circ Res ; 134(5): 572-591, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422173

RESUMO

The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.


Assuntos
Anemia Hemolítica Congênita , Hipertensão Pulmonar , Animais , Feminino , Humanos , Pressão Sanguínea , Biofísica , Hidropisia Fetal , Mamíferos
3.
Blood ; 143(4): 300-301, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270947
4.
Pediatr Ann ; 53(1): e34-e36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38194662

RESUMO

Transient erythroblastopenia of childhood is a rare, benign, self-limited condition seen in infants and young children. Laboratory studies will show moderate or severe normochromic normocytic anemia accompanied by absent or low reticulocytes, neutropenia, and mild thrombocytosis or thrombocytopenia. The etiology is unclear, but it has been associated with clinical or laboratory evidence of a recent viral syndrome. Initial diagnostic studies should be aimed at identifying potential causes of anemia, but a confirmed diagnosis is usually obtained once the hemoglobin level has normalized spontaneously. Differentiation from Diamond-Blackfan anemia is critical, especially in infants. Once the diagnosis is established, treatment is supportive, but red blood cell transfusion is indicated in severe cases. High clinical suspicion is imperative to avoid needless diagnostic and therapeutic measures. [Pediatr Ann. 2024;53(1):e34-e36.].


Assuntos
Anemia Hemolítica Congênita , Anemia , Pré-Escolar , Humanos , Lactente , Pediatras , Doenças Raras
5.
Transfusion ; 64(1): 150-161, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952228

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are released by red blood cells (RBCs) throughout their life-span and also during hypothermic storage when they accumulate in the blood bag. We queried whether stored RBCs with increased cation permeability, either from donors with familial pseudohyperkalaemia (FP) or caused by irradiation, vesiculate more readily. STUDY DESIGN AND METHODS: Recent technical advances have revealed at least two sub-populations of MVs in RBC storage units: macrovesicles (2-6 µm) and microvesicles (1-2 µm). Using nanoparticle tracking analysis, imaging flow cytometry, and protein quantification methods, we measured and characterized vesicles released by RBCs from control and FP individuals at three different storage time-points (day 4, day 17, and day 29). The RBCs had either been stored untreated or irradiated on either day 1 or day 14 of storage. RESULTS: We found no difference in the number or size of vesicles released between cation-leaky FP RBCs and non-FP controls. Similarly, irradiated and non-irradiated RBCs showed very similar patterns of vesicle release to during cold-storage. The only significant difference in vesicle release was the increase in accumulated vesicles with length of storage time which has been reported previously. DISCUSSION: EVs in stored blood are potential contributors to adverse transfusion reactions. The number of vesicles released during 35-day hypothermic storage varies between donors and increases with storage duration. However, increased cation permeability and irradiation do not appear to affect vesicle formation during RBC cold-storage.


Assuntos
Anemia Hemolítica Congênita , Vesículas Extracelulares , Humanos , Eritrócitos/metabolismo , Transfusão de Sangue , Doadores de Tecidos , Preservação de Sangue/métodos
6.
Blood ; 143(4): 357-369, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38033286

RESUMO

ABSTRACT: Cell-surface exposure of phosphatidylserine (PS) is essential for phagocytic clearance and blood clotting. Although a calcium-activated phospholipid scramblase (CaPLSase) has long been proposed to mediate PS exposure in red blood cells (RBCs), its identity, activation mechanism, and role in RBC biology and disease remain elusive. Here, we demonstrate that TMEM16F, the long-sought-after RBC CaPLSase, is activated by calcium influx through the mechanosensitive channel PIEZO1 in RBCs. PIEZO1-TMEM16F functional coupling is enhanced in RBCs from individuals with hereditary xerocytosis (HX), an RBC disorder caused by PIEZO1 gain-of-function channelopathy. Enhanced PIEZO1-TMEM16F coupling leads to an increased propensity to expose PS, which may serve as a key risk factor for HX clinical manifestations including anemia, splenomegaly, and postsplenectomy thrombosis. Spider toxin GsMTx-4 and antigout medication benzbromarone inhibit PIEZO1, preventing force-induced echinocytosis, hemolysis, and PS exposure in HX RBCs. Our study thus reveals an activation mechanism of TMEM16F CaPLSase and its pathophysiological function in HX, providing insights into potential treatment.


Assuntos
Anemia Hemolítica Congênita , Cálcio , Feminino , Humanos , Anemia Hemolítica Congênita/genética , Cálcio/metabolismo , Eritrócitos/metabolismo , Hidropisia Fetal/genética , Canais Iônicos/genética , Proteínas de Transferência de Fosfolipídeos/genética
7.
Pediatr Blood Cancer ; 71(3): e30834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38149846

RESUMO

Diamond-Blackfan anemia (DBA) is a congenital anemia with erythroid cell aplasia. Most of the causative genes are ribosomal proteins. GATA1, a hematopoietic master transcription factor required for erythropoiesis, also causes DBA. GATA1 is located on Xp11.23; therefore, DBA develops only in males in an X-linked inheritance pattern. Here, we report a case of transient erythroblastopenia and moderate anemia in a female newborn infant with a de novo GATA1 variant. In this patient, increased methylation of the GATA1 wild-type allele was observed in erythroid cells. Skewed lyonization of GATA1 may cause mild transient erythroblastopenia in a female patient.


Assuntos
Anemia Aplástica , Anemia de Diamond-Blackfan , Anemia Hemolítica Congênita , Masculino , Lactente , Recém-Nascido , Humanos , Feminino , Proteínas Ribossômicas/genética , Anemia de Diamond-Blackfan/genética , Eritropoese , Fator de Transcrição GATA1/genética
8.
J Clin Lab Anal ; 37(23-24): e24991, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38087905

RESUMO

BACKGROUND: Overhydrated hereditary stomatocytosis (OHSt) is a rare disorder characterized by abnormalities in erythrocytic volume homeostasis. Early and accurate diagnosis is essential for appropriate management and genetic counseling. METHODS: We present the case of a child with beta-thalassemia and a history of multiple blood transfusions. Clinical presentation, laboratory findings, and genetic testing were reviewed. Peripheral blood smear examination and genetic analysis were performed. RESULTS: The patient was admitted with severe anemia, and peripheral blood smear examination revealed the presence of up to 50% stomatocytes. Laboratory investigations showed abnormalities in red blood cell parameters, including decreased hemoglobin levels and increased mean corpuscular volume. Genetic testing identified a heterozygous mutation in the RHAG gene, confirming the diagnosis of OHSt. The presence of stomatocytes in the peripheral blood smear was transient, correlating with episodes of hemolysis and its control.


Assuntos
Anemia Hemolítica Congênita , Talassemia beta , Criança , Humanos , Talassemia beta/complicações , Talassemia beta/diagnóstico , Talassemia beta/genética , Anemia Hemolítica Congênita/diagnóstico , Anemia Hemolítica Congênita/genética , Eritrócitos , Eritrócitos Anormais
9.
Br J Haematol ; 203(4): 509-522, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37679660

RESUMO

This review concerns a series of dominantly inherited haemolytic anaemias in which the membrane of the erythrocyte 'leaks' the univalent cations, compromising the osmotic stability of the cell. The majority of the conditions are explained by mutations in one of six genes, coding for multispanning membrane proteins of different structure and function. These are: RhAG, coding for an ammonium carrier; SLC4A1, coding for the band 3 anion exchanger; PIEZO1, coding for a mechanosensitive cation channel; GLUT1, coding for a glucose transporter; KCNN4, coding for an internal-calcium-activated potassium channel; and ABCB6, coding for a porphyrin transporter. This review describes the five clinical syndromes associated with genetic defects in these genes and their variable genotype/phenotype relationships.


Assuntos
Anemia Hemolítica Congênita , Anemia Hemolítica , Humanos , Eritrócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Cátions/metabolismo , Canais Iônicos/genética
10.
Am J Hematol ; 98(12): 1877-1887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671681

RESUMO

Adenosine Triphosphatase (ATPase) Phospholipid Transporting 11C gene (ATP11C) encodes the major phosphatidylserine (PS) flippase in human red blood cells (RBCs). Flippases actively transport phospholipids (e.g., PS) from the outer to the inner leaflet to establish and maintain phospholipid asymmetry of the lipid bilayer of cell membranes. This asymmetry is crucial for survival since externalized PS triggers phagocytosis by splenic macrophages. Here we report on pathophysiological consequences of decreased flippase activity, prompted by a patient with hemolytic anemia and hemizygosity for a novel c.2365C > T p.(Leu789Phe) missense variant in ATP11C. ATP11C protein expression was strongly reduced by 58% in patient-derived RBC ghosts. Furthermore, functional characterization showed only 26% PS flippase activity. These results were confirmed by recombinant mutant ATP11C protein expression in HEK293T cells, which was decreased to 27% compared to wild type, whereas PS-stimulated ATPase activity was decreased by 57%. Patient RBCs showed a mild increase in PS surface exposure when compared to control RBCs, which further increased in the most dense RBCs after RBC storage stress. The increase in PS was not due to higher global membrane content of PS or other phospholipids. In contrast, membrane lipid lateral distribution showed increased abundance of cholesterol-enriched domains in RBC low curvature areas. Finally, more dense RBCs and subtle changes in RBC morphology under flow hint toward alterations in flow behavior of ATP11C-deficient RBCs. Altogether, ATP11C deficiency is the likely cause of hemolytic anemia in our patient, thereby underlining the physiological role and relevance of this flippase in human RBCs.


Assuntos
Anemia Hemolítica Congênita , Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Células HEK293 , Eritrócitos/metabolismo , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
11.
BMC Med Genomics ; 16(1): 215, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697358

RESUMO

BACKGROUND: Hereditary hemolytic anemia (HHA) refers to a heterogeneous group of genetic disorders that share one common feature: destruction of circulating red blood cells (RBCs). The destruction of RBCs may be due to membranopathies, enzymopathies, or hemoglobinopathies. Because these are genetic disorders, incorporation of next-generation sequencing (NGS) has facilitated the diagnostic process of HHA. METHOD: Genetic data from 29 patients with suspected hereditary anemia in a tertiary hospital were retrospectively reviewed to evaluate the efficacy of NGS on hereditary anemia diagnosis. Targeted NGS was performed with custom probes for 497 genes associated with hematologic disorders. After genomic DNA was extracted from peripheral blood, prepared libraries were hybridized with capture probes and sequenced using NextSeq 550Dx (Illumina, San Diego, CA, USA). RESULT: Among the 29 patients, ANK1 variants were detected in five, four of which were pathogenic or likely pathogenic variants. SPTB variants were detected in six patients, five of which were classified as pathogenic or likely pathogenic variants. We detected g6pd pathogenic and spta1 likely pathogenic variants in two patients and one patient, respectively. Whole-gene deletions in both HBA1 and HBA2 were detected in two patients, while only HBA2 deletion was detected in one patient. One likely pathogenic variant in PLKR was detected in one patient, and one likely pathogenic variant in ALAS2 was detected in another. CONCLUSION: Here, NGS played a critical role in definitive diagnosis in 18 out of 29 patients (62.07%) with suspected HHA. Thus, its incorporation into the diagnostic workflow is crucial.


Assuntos
Anemia Hemolítica Congênita , Humanos , Criança , Estudos Retrospectivos , Anemia Hemolítica Congênita/diagnóstico , Anemia Hemolítica Congênita/genética , Eritrócitos , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas do Citoesqueleto , 5-Aminolevulinato Sintetase
13.
Blood Rev ; 61: 101103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353463

RESUMO

Novel developments in therapies for various hereditary hemolytic anemias reflect the pivotal role of pyruvate kinase (PK), a key enzyme of glycolysis, in red blood cell (RBC) health. Without PK catalyzing one of the final steps of the Embden-Meyerhof pathway, there is no net yield of adenosine triphosphate (ATP) during glycolysis, the sole source of energy production required for proper RBC function and survival. In hereditary hemolytic anemias, RBC health is compromised and therefore lifespan is shortened. Although our knowledge on glycolysis in general and PK function in particular is solid, recent advances in genetic, molecular, biochemical, and metabolic aspects of hereditary anemias have improved our understanding of these diseases. These advances provide a rationale for targeting PK as therapeutic option in hereditary hemolytic anemias other than PK deficiency. This review summarizes the knowledge, rationale, (pre)clinical trials, and future advances of PK activators for this important group of rare diseases.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica Congênita , Anemia Hemolítica , Humanos , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Anemia Hemolítica/metabolismo , Anemia Hemolítica Congênita não Esferocítica/etiologia , Anemia Hemolítica Congênita não Esferocítica/terapia , Eritrócitos/metabolismo , Anemia Hemolítica Congênita/terapia , Anemia Hemolítica Congênita/metabolismo
14.
Int J Lab Hematol ; 45 Suppl 2: 79-86, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37290893

RESUMO

Hereditary hemolytic anemia (HHA) is a heterogeneous group of disorders due to genetically caused defects in red blood cell membrane structure, enzymes, heme and globin synthesis, erythroid proliferation, and differentiation. Traditionally, the diagnostic process is complex and includes a plethora of tests from routine to highly specialized ones. The inclusion of molecular testing has significantly improved the diagnostic yield. The value of molecular testing is broader than just rendering the correct diagnosis, as it may also guide therapeutic decisions. As more molecular modalities become available for clinical use, it is imperative to understand their benefits and disadvantages pertaining to the HHA diagnostics. Re-evaluation of the traditional diagnostic workflow may also bring forth additional benefits. This review focuses on the current state of molecular testing for HHA.


Assuntos
Anemia Hemolítica Congênita , Anemia Hemolítica , Humanos , Anemia Hemolítica Congênita/diagnóstico , Anemia Hemolítica Congênita/genética , Eritrócitos/metabolismo , Membrana Eritrocítica/metabolismo , Técnicas de Diagnóstico Molecular , Anemia Hemolítica/diagnóstico , Anemia Hemolítica/genética
16.
Ann Clin Lab Sci ; 53(1): 134-139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36889775

RESUMO

OBJECTIVE: Unstable hemoglobinopathy (UH), red blood cell membrane disease (MD), and red blood cell enzymopathy are known as major congenital hemolytic anemias. Specialized examinations are needed for their differential diagnosis. We hypothesized that simultaneous measurements of HbA1c levels using high-performance liquid chromatography (HPLC) by fast mode (FM) and immunoassay [HPLC (FM)-HbA1c and IA-HbA1c, respectively] are useful for the differential diagnosis of UH from other congenital hemolytic anemias and verified this hypothesis in this study. METHODS: HPLC (FM)-HbA1c and IA-HbA1c levels were simultaneously measured in 5 variant hemoglobinopathy (VH) patients with ß-chain heterozygous mutation, 8 MD patients, 6 UH patients, and 10 healthy controls. None of the patients had diabetes mellitus. RESULTS: In VH patients, HPLC-HbA1c levels were low, whereas IA-HbA1c levels were within the reference range. In MD patients, HPLC-HbA1c and IA-HbA1c levels were similarly low. In UH patients, both HPLC-HbA1c and IA-HbA1c levels were low, but HPLC-HbA1c levels were significantly lower than IA-HbA1c levels. The HPLC-HbA1c/IA-HbA1c ratio was 90% or more in all MD patients and control subjects. This ratio was, however, less than 90% in all VH patients and UH patients. CONCLUSION: The HPLC (FM)-HbA1c/IA-HbA1c ratio calculated using simultaneous measurements of HPLC (FM)-HbA1c and IA-HbA1c levels is useful for the differential diagnosis of VH, MD, and UH.


Assuntos
Anemia Hemolítica Congênita , Hemoglobinopatias , Humanos , Hemoglobinas Glicadas , Cromatografia Líquida de Alta Pressão/métodos , Hemoglobinopatias/diagnóstico , Imunoensaio
18.
Pediatr Blood Cancer ; 70(5): e30245, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36798023

RESUMO

Congenital dyserythropoietic anemia type IV (CDAIV) is a rare inherited hematological disorder, presenting with severe anemia due to altered erythropoiesis and hemolysis, with variable needs for recurrent transfusions. We present a case of a transfusion-dependent male newborn who presented at birth with severe hemolytic anemia, and required an intrauterine transfusion. Genetic testing rapidly identified a Kruppel-like factor 1 (KLF1) pathogenic variant (c.973G>A, p.E325K), known to be causative for CDAIV. This case highlights the advantages of next-generation sequencing testing for congenital hemolytic anemia: diagnostic speed, guidance on natural history, and optimized clinical management and anticipatory guidance for parents and clinicians. Additionally, we reviewed the literature for all CDAIV cases.


Assuntos
Anemia Diseritropoética Congênita , Anemia Hemolítica Congênita , Doenças Hematológicas , Recém-Nascido , Humanos , Masculino , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/terapia , Eritropoese
19.
Eur J Haematol ; 110(6): 688-695, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36825813

RESUMO

INTRODUCTION: Hereditary hemolytic anemias (HHA) comprise a heterogeneous group of disorders resulting from defective red blood cell (RBC) cytoskeleton, RBC enzyme deficiencies, and hemoglobin (Hb) synthesis disorders such as thalassemia or sideroblastic anemia. MATERIALS AND METHODS: Our hemolytic anemia diagnostic next-generation sequencing (NGS) panel includes 28 genes encoding RBC cytoskeletal proteins, membrane transporter, RBC enzymes, and certain bilirubin metabolism genes. The panel covers the complete coding region of these genes, splice junctions, and, wherever appropriate, deep intronic or regulatory regions are also included. Four hundred fifty-six patients with unexplained hemolytic anemia were evaluated using our NGS panel between 2015 and 2019. RESULTS: We identified pathogenic/likely pathogenic variants in 111/456 (24%) patients that were responsible for the disease phenotype (e.g., moderate to severe hemolytic anemia and hyperbilirubinemia). Approximately 40% of the mutations were novel. As expected, 45/456 (10%) patients were homozygous for the promoter polymorphism in the UGT1A1 gene, A(TA)7 TAA (UGT1A1*28). 8/45 homozygous UGT1A1*28 cases were associated with additional pathogenic mutations causing hemolytic anemia, likely exacerbating hyperbilirubinemia. The most common mutated genes were membrane cytoskeleton genes SPTA1, and SPTB, followed by PKLR. Complex interactions between SPTA1 low expression alleles, alpha-LELY and alpha-LEPRA alleles, and intragenic SPTA1 variants were associated with hereditary pyropoikilocytosis and autosomal recessive hereditary spherocytosis in 23/111 patients. CONCLUSIONS: Our results demonstrate that hemolytic anemia is underscored by complex molecular interactions of previously known and novel mutations in RBC cytoskeleton/enzyme genes, and therefore, NGS should be considered in all patients with clinically unexplained hemolytic anemia and in neonates with hyperbilirubinemia. Moreover, low expression alleles alpha-LELY and alpha-LEPRA should be included in all targeted HHA panels.


Assuntos
Anemia Hemolítica Congênita , Eliptocitose Hereditária , Esferocitose Hereditária , Humanos , Anemia Hemolítica Congênita/diagnóstico , Anemia Hemolítica Congênita/genética , Eliptocitose Hereditária/diagnóstico , Eliptocitose Hereditária/genética , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Proteínas do Citoesqueleto/genética , Hiperbilirrubinemia , Sequenciamento de Nucleotídeos em Larga Escala
20.
Blood Adv ; 7(12): 2681-2693, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36595486

RESUMO

Gain-of-function mutations in PIEZO1 cause dehydrated hereditary stomatocytosis (DHS) or hereditary xerocytosis, an autosomal dominant hemolytic anemia characterized by high reticulocyte count, a tendency to macrocytosis, and mild jaundice, as well as by other variably penetrant clinical features, such as perinatal edema, severe thromboembolic complications after splenectomy, and hepatic iron overload. PIEZO1 mutations in DHS lead to slowed inactivation kinetics of the ion channel and/or facilitation of channel opening in response to physiological stimuli. To characterize the alterations of red blood cell proteome in patients with mutated PIEZO1, we used a differential approach to compare the proteome of patients with DHS (16 patients from 13 unrelated ancestries) vs healthy individuals. We identified new components in the regulation of the complex landscape of erythrocytes ion and volume balance mediated by PIEZO1. Specifically, the main impaired processes in patients with DHS were ion homeostasis, transmembrane transport, regulation of vesicle-mediated transport, and the proteasomal catabolic process. Functional assays demonstrated coexpression of PIEZO1 and band 3 when PIEZO1 was activated. Moreover, the alteration of the vesicle-mediated transport was functionally demonstrated by an increased vesiculation rate in patients with DHS compared with healthy controls. This finding also provides an explanation of the pathogenetic mechanism underlying the increased thrombotic rate observed in these patients. Finally, the newly identified proteins, involved in the intracellular signaling pathways altered by PIEZO1 mutations, could be used in the future as potential druggable targets in DHS.


Assuntos
Anemia Hemolítica Congênita , Mutação com Ganho de Função , Gravidez , Feminino , Humanos , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/complicações , Anemia Hemolítica Congênita/metabolismo , Proteoma/metabolismo , Hidropisia Fetal/genética , Hidropisia Fetal/metabolismo , Eritrócitos/metabolismo , Mutação , Canais Iônicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...